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The influence of the Bardeen Herring back-jump correlations on the Fermi- 
Dirac statistics of the one-dimensional nonhomogeneous fermionic lattice gas is 
studied by the Monte Carlo simulation technique and semianalytically. The 
resulting distribution is obtained, exhibiting increased population of the lower 
levels in comparison to the Fermi-Dirac statistics. 
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1. I N T R O D U C T I O N  

The present paper  is concerned with the analysis of  the distribution of 
correlated particles. The influence of the correlations on the distribution of 
structureless particles hopping in the one-dimensional nonhomogeneous  
fermionic lattice gas is studied here systematically by Monte  Carlo simula- 
tion and semianalytically, By "fermionic lattice gas" we understand such a 
lattice gas in which double occupancy of  the lattice sites is forbidden. This 
constraint  plays a role analogous to Pauli 's exclusion principle for usual 
fermions. In lattice gases defined in this way the undistinguishability of the 
particles, analogous to the quan tum mechanical  one, can easily be assured. 
The above-ment ioned hopping process is interesting and complicated, since 
in the mot ion  of  the particles correlations with a fluctuating surroundings 
appear. 
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Much work, numerical, phenomenological, and theoretical, has been 
devoted to the hopping of particles in concentrated fermionic lattice gases. 
In particular, effort has been made to analyze the basic mechanism for the 
correlations which accompanies a particle hopping in a concentrated 
fermionic lattice gas, i.e., BardeemHerring-type back-jump correlation 
effect. (H~ Namely, when a particle exchanges with a vacancy, there is a 
strong tendency for the reverse exchange of this particle with the same 
vacancy, resulting just in a net backward correlation in a particle hopping. 

Usually, this mechanism is studied in the context of diffusion, where it 
leads to, e.g., an essential reduction of the tracer diffusion coefficient. In the 
present paper we consider, however, this mechanism in a nondiffusion 
context. 

We study a fermionic lattice gas in statistical equilibrium and consist- 
ing of undistinguishable particles hopping on a (vertical, one-dimensional, 
semi-infinite) "ladder." The rungs of the ladder are single-particle, 
hierarchical (for simplicity equally distributed) energy levels. The higher 
levels of the ladder have larger potential energies, since (for simplicity con- 
stant) external force has been applied vertically to the system. Hence, the 
observed population of the particles in the vertical direction is non- 
homogeneous. Moreover, we assume that exchange between the different 
particles is impossible and any particle can jump only to the nearest- 
neighbor empty site. Apart from the double occupancy of the sites which 
we have excluded, there are no further mutual interactions between the 
particles. 

To clarify the problem, let us classify all the current jumps of the par- 
ticles in this model into two groups. In the first group we have jumps which 
occur against the external force, and in the second group those which occur 
in accordance with that force. Due to the back-jump correlation effect, the 
next (second) backward jumps of the particles from the first group lead to 
an increase of the population of the lower levels of the ladder. The 
analogous backward jumps for the particles from the second group lead to 
an increase of the population of the higher levels. Now the question arises 
as to the net result of both opposite tendencies. 

It is decided here in the computer experiment (Section 2) and thanks 
to theoretical considerations (Section 3) that the sought net result is a 
distribution with a population of the lower levels higher than with the 
(standard) Fermi-Dirac statistics. Intuitively we could expect this result 
from the very beginning because the applied external force favors the 
downward (backward) jumps. The obtained result is systematically 
discussed, and Section 4 contains our concluding remarks. 
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2. N U M E R I C A L  PROCEDURE A N D  RESULTS 

Since the hopping process of the particles was carried out by the 
standard Monte Carlo simulation technique, (4-1~ we will mention only 
some special features and characteristic steps of the present approach. 

We usually work with short ladders of length N =  2(~200 levels with 
blocking boundary conditions imposed at the bottom and at the top. (By 
blocking boundary conditions we mean that the jump of the particle being 
at the nearest-neighbor site to the wall cannot be performed in the direc- 
tion of the wall.) To simulate the semi-infinite system, the length of the 
ladders was chosen so that the jumping particles could never reach the 
top of the ladder (during the computer experiment but after relaxation 
of the system to statistical equilibrium). The external (constant) force F 
was vertically applied against the h axis so that the (vertical) particle jump 
rate to an unoccupied site is defined, in the standard way, as 

I t') F o exp - for jumps in accordance with the h axis 

otherwise 

Here ~=kT/Ae will be called the "dimensionless temperature," where 
A~ = ~(h + 1 ) - e ( h )  is the energy difference between two consecutive energy 
levels h + 1 and h, respectively (typically, in our simulations At = 0.02 eV), 
and the energy level is e(h)= Fha, with a the lattice constant (which has 
been assumed further as equal to unity); Fo is an unbiased jump rate. 
The significant results discussed below were obtained for ~ < 1, which 
means that we have to deal with a strongly degenerate fermionic lattice gas 
in this region. [The degeneration temperature T o is given here as 
kT o ~ (~p-1)Ae ,  where ~p is the fixed number of particles initially dis- 
tributed on each ladder.] 

We usually operate with a statistical ensemble consisting of N =  80 
identical ladders to estimate experimentally the desired distribution n(h), 
i.e., the average number of particles in a given state number h of energy 
e(h), when the system is in statistical equilibrium. The computer counts 
therefore the current total number of particles Y ( h )  on a given level h (at 
the whole statistical ensemble) and then calculates the current occupancy 
as v(h)=sV'(h)/N. For times shorter than to~500  Monte Carlo steps per 
particle (MCS/p) equilibrium was not yet established. 

We average additionally the current occupancy number v(h) over time 
beginning from to up to t~5000  MCS/p (then the relative statistical 
error is smaller than 0.1%). The resulting experimental distribution 
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n(h) = ( v ( h ) )  for correlated particles in a fermionic lattice gas is represen- 
ted in Fig. 1 by the black circles. For comparison we also show, by open 
circles, the Fermi Dirac statistics (11) 

nv (h )  = 
exp[(h - hv)/~]  + 1 

(where hF is the Fermi level calculated numerically from the normalization 
condition) which only characterizes the uncorrelated fermions. This 
statistics is also reproduced (with a very good approximation) in an addi- 
tional computer experiment where the horizontal jumps of the particles are 
permitted. (Then we treat our statistical ensemble of ladders as simply a 
two-dimensional lattice gas on a rectangular lattice.) We could expect such 
a result because now (generally speaking) the vacancies and the particles 
can easily depart and therefore the role of the back-jump correlation effect 
much decreases in this model. Moreover, in this case the Fermi level 
fluctuates from ladder to ladder, which strongly decreases the correlation 
effect. 

In the vicinity of the Fermi level (cf. Fig. 1) a serious disagreement 
is seen between the experimental data (black circles) for the correlated 
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Fig. 1. Analysis of several statistics for the fermionic lattice gas as discussed in the text (here 
the absolute temperature T= 150 K). 
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particles and the Fermi-Dirac statistics (open circles), increasing when the 
temperature decreases and not exceeding here 15 %. This is indeed the main 
experimental result of the present paper. 

For example, to verify the stability of this result, we repeated our 
Monte Carlo simulation three times, using three different types of initial 
configurations of the particles, namely (i) homogeneous population of 
the sites (i.e., population of sites according to the Fermi Dirac statistics 
at infinite temperature), (ii) distribution of the particles according to the 
Fermi-Dirac statistics at zero temperature, and (iii) at the real 
temperature. We can conclude that no changes in the final result were 
observed, although the system reaches the statistical equilibrium quickest 
in the third case. 

The dots in Fig. 1 (very near the black circles) represent the fit of the 
(standard) Fermi-Dirac statistics to the experimental data, where the 
dimensionless temperature c~ was treated as a free fit parameter. (A very 
similar result, undistinguishable on the scale of the figure, was obtained 
when the Fermi level h v was treated as an additional, second fit 
parameter.) However, a little deviation from the experimental data is still 
present. The result (which gives, as is seen, the Fermi-Dirac statistics at 
apparently lower temperature) is nevertheless qualitatively consistent with 
the experimental observation that the correlated particles of the fermionic 
lattice gas populate on the average the lower levels. The theoretical results, 
presented in Fig. 1 by crosses, are discussed in the next section, where 
"detailed balance conditions" involving three-point occupancy joint 
probabilities are exploited. 

In Fig. 2 we show additionally the fitted effective dimensionless tem- 
perature eeff as a function of c~. The black circles were calculated for our 
one-dimensional model, while the open circles were obtained in an 
additional experiment where horizontal jumps of the particles were also 
permitted. (The crosslet in the same figure was obtained from the two-state 
model including only one active particle.) As is seen, a significantly 
decreasing temperature of the correlated particles is present for c~ < 1. (We 
assumed a scaling factor 103k/A~ = 4.285 K-1. )  

3. F O R M A L I S M  

In this section we derive the difference recurrency equation for desired 
distribution. For simplicity we assume that all correlations can be 
described only by the two-point ones. 

We therefore briefly consider the hierarchy of the detailed balance con- 
ditions which are fulfilled by our system at equilibrium. These conditions 
are the static version of the hierarchy of equations generated from the 
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Fig. 2. The dimensionless, effective, relative temperature c~eff/e as a function of the dimen- 
sionless temperature e for our one-dimensional system (black circles) and for the rectangular 
lattice (open circles; the crosslet is discussed in text). 

Markovian master equation by appropriate summations. For example, one 
of the second-order detailed balance conditions for some static, two-point 
occupancy joint probabilities has the form 

FT(h  ) P l o ( h )  = F,~(h + l )  P o l ( h ) ,  h = O, 1, 2 .... (1) 

where, e.g., Plo(h) is the static, two-point occupancy joint probability of 
finding a particle at level h and a vacancy at a higher, nearest-neighbor 
level h + 1. In this notation Pl(h) represents the desired distribution func- 
tion. (In the whole formalism it is not necessary to assume that the levels 
should be equally distributed.) As is seen, (1) describes the balance between 
two local currents of probability [-e.g., the left-hand side of (1) denotes the 
current probability of particles passing from site h up to the nearest- 
neighbor site]. If we would permit further decoupling of the two- 
point occupancy joint probabilities, e.g., by assuming that P~0(h)= 
Pl(h) Po(h+ 1), which is characteristic for the uncorrelated particles, we 
would easily find (12) the Fermi-Dirac statistics as a solution of (1). 

Additionally, we have the third-order detailed balance conditions for 
some three-point occupancy joint probabilities. For example, one of these 
conditions takes the form 

F~(h)Plol(h)=Fl(h+ 1) Poll(h), h = 0 ,  1, 2 .... (2) 
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[where, e.g., P~oi(h) is the three-point occupancy joint probability of 
finding a vacancy at a level h + 1 and the particles in the nearest-neighbor 
levels below and above]. 

To terminate the hierarchy we use the cluster expansion (13) (which is 
the one of the most effective factorization method) for describing the three- 
point occupancy joint probabilities in terms of the two-point occupancy 
correlation functions. For example, 

Plol(h) ~ Pl(h) Po(h + 1) P~(h + 2) + PI(h) Fol(h -I- 1 ) 

+ Po(h + 1) F'tl(h ) H- PI(h + 2) F~o(h) (3) 

where, e.g., Fol(h+ 1) is the two-point occupancy correlation function 
defined as Fol(h+ 1)=Pol (h+  1 ) - P o ( h +  1 )P l (h+2)  [F'H(h) has an 
analogous definition, but for particles occupying levels h and h + 2]. Our 
basic assumption here says that all three-point occupancy correlation 
functions vanish. 

After straightforward but tedious calculations we derive (using the 
normalization and symmetry conditions fulfilled by the joint probabilities) 
a nonlinear second-order difference recurrency equation for the desired 
distribution function, 

[ --TolPl(h) -}- Pl(h) PI(h H- 1) + 7;1PI( h + 1)] 

x [Pl(h + 1 ) -701] [P l (h  + 2) -7~2]  

= [ 7 ' 1 2 P l ( h + Z ) + P l ( h + 2 ) P l ( h + l ) - T 1 2 P ~ ( h + l ) ]  

x [Pl(h) + 7~)13 [PI( h + 1 ) + ~'~2] (4) 

where the abbreviated notation reads as follows: 

, FT(h+j) [ F~(h+j) ] 1 
7yj+l=Yjj+l-1 ,  7jj+l-r+(h+j+l)Lr+-~-~TT-1) 1 ( j=0 ,  1) 

We present this equation in the form which explicitly exhibits the required 
two kinds of symmetry conditions (the invariance under inversion of the 
external force and invariance under exchange of the roles of the particle 
and the vacancy). 

The formalism obtained, e.g., under the assumption that the four-point 
correlations can be described by at the utmost the three-point ones, is only 
much more arithmetically complicated, while the idea of the derivation (in 
this case) of the nonlinear third-order difference recurrency equation is the 
same. 



396 Barszczak and Kutner 

At present we have only numerical solutions of the derived recurrency 
equations, shown in Fig. 1 once more by dots for (4) (undistinguishable, on 
the scale of the figure, from the earlier discussed result of the fit of the 
Fermi-Dirac statistics to our experimental data) and by crosses for the 
mentioned more complicated approach. Note that because our equations 
are second- and third-order difference ones, they require, to determine the 
solutions, two and three additional (e.g., initial) conditions, respectively. 
To find numerical solutions it is easier to, e.g., in the more complicated 
case, treat the values Pl(h = 0), Pl(h = 1), and Pl(h = 2) as free parameters 
which can be obtained by the fit to the experimental data [as fit 
parameters we can also use any three consecutive values Pl(h=j), 
P~(h = j +  1), and Pl(h = j +  2), j =  0, 1,...]. 

4. C O N C L U D I N G  R E M A R K S  

As is seen from Fig. 1, the solution of the third-order recurrency equa- 
tion (crosses) fits best the data of our computer experiment (we hope that 
this is so not only because it has the most free parameters). This result is 
quite consistent with the picture of the back-jump correlations where at 
least two consecutive jumps of a particle, and therefore at least three con- 
secutive visited levels, are directly correlated, i.e., cannot solely be represen- 
ted by the two-point occupancy correlation functions. In our formalism, 
however, the explicit form of the correlations was never used. Neither was 
it necessary to develop the more extended formalism to calculate higher- 
order occupancy correlation functions. 

Roughly interpreting the results, we say that the correlated particles of 
the fermionic lattice gas behave as if they were colder. Alternatively, this 
can also be interpreted as an apparent increase of the energy differences 
between the levels (or possibly by both these phenomena occurring 
simultaneously). These observations are valid for the systems with metallic 
as well as with semiconductor structure. 

Because the back-jump correlations accompany (with larger or smaller 
intensity) the hopping process even of noninteracting particles (except that 
double occupancy is forbidden), it would be interesting and important to 
have, e.g., the analytical solutions of our equations, and then analytically 
study the statistical, thermal physics of the fermionic lattice gas. 

NOTE A D D E D  IN P R O O F  

Similar deviations from the distribution of the Fermi-Dirac type was 
also found for this model by the static calculations of R. N6meth and 
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K. K e h r  (14). They direct ly  coun ted  by numer ica l  means  the number  of  
poss ible  conf igura t ions  of the par t ic les  in the small  system (15) and  then 
ca lcula ted  the par t ia l  and  the to ta l  pa r t i t ion  functions.  Hence,  by the usual  
way they numer ica l ly  ob ta ined  the desired statist ics for the fermionic  lat t ice 
gas. 
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